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Abstract
We present the Montreal Forced Aligner (MFA), a new open-
source system for speech-text alignment. MFA is an update to
the Prosodylab-Aligner, and maintains its key functionality of
trainability on new data, as well as incorporating improved ar-
chitecture (triphone acoustic models and speaker adaptation),
and other features. MFA uses Kaldi instead of HTK, allow-
ing MFA to be distributed as a stand-alone package, and to
exploit parallel processing for computationally-intensive train-
ing and scaling to larger datasets. We evaluate MFA’s perfor-
mance on aligning word and phone boundaries in English con-
versational and laboratory speech, relative to human-annotated
boundaries, focusing on the effects of aligner architecture and
training on the data to be aligned. MFA performs well relative
to two existing open-source aligners with simpler architecture
(Prosodylab-Aligner and FAVE), and both its improved archi-
tecture and training on data to be aligned generally result in
more accurate boundaries.
Index Terms: forced alignment, automatic segmentation,
acoustic analysis

1. Introduction
In forced alignment, speech and its corresponding orthographic
transcription are automatically aligned at the word and phone
level, given a way to map graphemes to phonemes (typically a
pronunciation lexicon) and a statistical model of how phones are
realized. Forced alignment has become widely used in scien-
tific research on language over the past ∼10 years, including in
sociolinguistics, phonetics, language documentation, and psy-
cholinguistics (e.g. [1, 2, 3, 4, 5]). This use has been driven by
the availability of accurate, pre-built, and easily usable aligners,
such as FAVE/P2FA, (Web)MAUS, and Prosodylab-Aligner
[6, 7, 8]. We focus on this broad use case: forced alignment
for language sciences using publicly-available software, when
at least an orthographic transcript is available.1

Many such forced aligners now exist (e.g. [6, 7, 8, 12, 13,
14, 15, 16, 17]), which differ in two key ways. First, in architec-
ture, including the acoustic model used to model the realization
of phones, and whether the acoustic features are transformed to
account for speaker variability. Second, in trainability: most
aligners ship with pre-trained acoustic models only, while oth-
ers can be retrained on new data [8, 17].

We describe the Montreal Forced Aligner (MFA), new
open-source forced alignment software which is a successor to
the Prosodylab-Aligner. MFA maintains Prosodylab-Aligner’s

1We do not address related work, such as on linguistic analysis of
untranscribed speech [9], or phoneme boundary detection [10], or text-
speech alignment for TTS [11].

trainability and updates its architecture. MFA uses triphone
acoustic models to capture contextual variability in phone re-
alization, in contrast to monophone acoustic models used in
Prosodylab-Aligner and other current aligners (e.g. FAVE).
MFA also includes speaker adaptation of acoustic features to
model interspeaker differences. MFA uses the Kaldi speech
recognition toolkit [18], which offers advantages over the HTK
toolkit underlying most existing aligners.

We evaluate MFA’s performance on detecting word and
phone boundaries in laboratory and conversational speech. Our
experiments test whether the more complex architecture and
trainability of MFA affect performance, by comparing to two
existing monophone acoustic model aligners and varying the
training data.

2. Montreal Forced Aligner
MFA is an open-source command line utility, with prebuilt ex-
ecutables for Windows and Mac OSX, and online documenta-
tion.2 MFA is built on top of Kaldi, an actively maintained,
open-source automatic speech recognition toolkit [18], and has
three key usability features: it builds on the trainability of
Prosodylab-Aligner, and improves portability and scalability.
The use of Kaldi as the ASR toolkit rather than HTK allows for
easier distribution due to Kaldi’s more permissive license, so no
compilation from source is required by the user. MFA’s use of
Kaldi is highly parallel, which mitigates run time when using
larger corpora and more computationally-intensive training.

The ASR pipeline that MFA implements uses a standard
GMM/HMM architecture, adapted from existing Kaldi recipes.
To train a model, monophone GMMs are first iteratively trained
and used to generate a basic alignment. Triphone GMMs are
then trained to take surrounding phonetic context into account,
along with clustering of triphones to combat sparsity. The tri-
phone models are used to generate alignments, which are then
used for learning acoustic feature transforms on a per-speaker
basis, in order to make the models more applicable to speakers
in other datasets [19]. MFA has been successfully applied to
29 languages from GlobalPhone [20], the NCHLT corpora of
South African languages [21], and other corpora.

MFA uses mel-frequency cepstral coefficients (MFCCs) as
acoustic features. Thirteen MFCCs are calculated with a 25 ms
window size and 10 ms frame shift. The feature calculation has
a frequency ceiling of 8 kHz, allowing for acoustic models to be
built and used regardless of sampling rate (i.e., models trained
on 16 kHz sampled files can be applied to 44.1 kHz sampled
files without manual resampling). Delta and delta-delta fea-
tures from surrounding MFCC frames are also included, giving

2https://montrealcorpustools.github.io/
Montreal-Forced-Aligner/



39 features per frame. Following MFCC generation, CMVN
is applied to the features on a per-speaker basis to increase ro-
bustness to speaker variability. In the final round of training,
feature transforms for each speaker are estimated using feature
space Maximum Likelihood Linear Regression (fMLLR) [19].
Speaker adaptation is also done when aligning using pre-trained
models, but can be disabled for faster alignment.

During training, MFA does 40 iterations of monophone
GMM training, with realignment done during 20 of the itera-
tions. Following monophone training, 35 iterations of triphone
training are done, with 15 iterations that perform realignment.
Speaker-adapted triphone training includes another 35 iterations
with 15 realignment iterations, as well as 5 iterations that in-
clude fMLLR estimation. Multiprocessing is used extensively
during feature calculation and training, allowing MFA to handle
training and alignment of large corpora. For instance, the 1000-
hour LibriSpeech corpus was aligned in 80 hours (on a desk-
top using 12 3.4-Ghz processors, 32 GB memory), and training
from scratch on the 20-hour Buckeye corpus (Sec. 3) took 2
hours (on a laptop using 4 2.5-GHz processors, 8GB memory).

MFA ships with a pre-trained model for English that has
been trained on the LibriSpeech corpus [22] (∼1000 hours
of audiobooks), and pre-trained acoustic models (mostly from
GlobalPhone corpora [20]) and grapheme-phoneme models for
generating pronunciation dictionaries are publicly available in
the online documentation for 20+ languages. A key feature of
MFA is trainability of acoustic models on new data, as in the
Prosodylab-Aligner [8]. Thus, a user can align their dataset ei-
ther using pre-trained models, or by training from scratch on
the dataset. Alignment can be significantly better when us-
ing acoustic models trained from scratch—especially when the
dataset to be aligned is sufficiently large and varied. We rec-
ommend experimenting with pre-trained models and retraining,
as it is an empirical question which method gives better align-
ments.3 The experiments in Section 3 address this question.

There are two primary transcription formats used in current
forced aligners, exemplified by Prosodylab-Aligner and FAVE.
Prosodylab-Aligner aligns short wav files, each with an associ-
ated text file specifying the transcription. This format is com-
mon to lab speech where individual trials keep speech segments
naturally short. FAVE aligns long files containing time-aligned
periods of transcribed speech, a format more common to soci-
olinguistic data and spontaneous speech. MFA supports both
formats, building on the Prosodylab-Aligner format and adding
support for Praat [23] TextGrids as a way to specify transcrip-
tions in longer sound files. The TextGrid format allows for the
user to specify transcriptions for multiple speakers in the same
file. The output of alignment is then a TextGrid for each input
file, with separate word and phone tiers for each speaker.

MFA contains other upgrades to the Prosodylab-Aligner.
Instead of requiring every word in the transcripts to be in the
pronunciation dictionary, MFA includes an explicit model for
unknown words as having a unique phone, which allows them to
be modeled while maintaining alignment of surrounding words.
The unknown word’s phone is constructed similarly to the si-
lence phone, and can match any amount of vocal noise or speech
(e.g. words of different lengths). Before performing alignment,
MFA prompts the user if unknown words are found, includ-
ing their location, to deal with simple typos for existing words.
Anecdotally, MFA’s alignment quality remains very good when
up to 5–10% of word types are unknown.

3Similarly, disabling speaker adaptation may lead to better align-
ments if there is little enough data per speaker.

A common source of alignment errors in read speech like
audio books or laboratory experiments is deviations from the
prompt, such as filled pauses, restarts, or speech errors. Tran-
scriptions of spontaneous speech often contains analogous tran-
scription errors, since listeners are prone to filtering out such
deviations. Rather than manual inspection of each audio file
for deviations from the transcription, MFA offers a feature from
Kaldi to facilitate finding and correcting them. A limited lex-
icon per utterance is generated, supplemented with frequent
words, and a simple speech recognition pass is run on the file
to generate a transcript. This generated transcript is compared
to the original transcript and deviations are saved to facilitate
manual inspection.

3. Evaluation
Our evaluation of MFA addresses three questions: (1) how
good is the aligner’s performance relative to manual annotation,
and what is the effect on performance of the two key aspects
of MFA: (2) architecture (acoustic model and speaker adapta-
tion) and (3) trainability? We evaluate MFA’s performance by
examining its accuracy on detecting phone and word bound-
aries in two datasets, representing types of speech commonly
used in language research: isolated-word lab speech and con-
versational interview speech. We compare MFA to two ex-
isting widely-used aligners with simpler architectures—FAVE
and Prosodylab-Aligner—and vary the training data for align-
ers where possible.

3.1. Datasets

The first dataset used in our evaluations was the Buckeye Cor-
pus [24], which contains 20.7 hours of conversational speech
from 40 speakers. Buckeye comes with manual transcription
and boundaries at the phone and word level, which were pro-
duced by forced alignment followed by manual correction. The
Buckeye phone set represents more subphonemic detail (e.g.
flapping) than needed for our evaluations; we thus mapped it to
the phone set used in our pronunciation dictionary (see below).

HTK-based aligners, such as FAVE and Prosodylab-
Aligner, require relatively short speech chunks. We thus broke
up Buckeye into chunks bounded by non-speech (pauses, noise,
interviewer speech) of >150 msec marked in the transcription
files, using PolyglotDB.4 Each of these chunks consists of an
orthographic transcription and speech, as well as corresponding
word and phone-level manual alignments. In our evaluation,
the transcription and speech are force-aligned, and the manual
alignments used as the gold standard.

Utterances were excluded if they contained words not in the
pronunciation dictionary used in evaluation, for comparability
between FAVE/Prosodylab-Aligner (which require all words to
be in the dictionary) and MFA (which does not).

The second dataset, Phonsay, consists of 48 minutes of lab
speech from 45 participants from two experiments. Participants
said words in the frame ”Please say again”. The target words
all contained vowels followed by a consonant: a voiced ob-
struent, unvoiced obstruent, or sonorant (e.g. buzz, bus, bun).
The boundaries of the vowel and the following consonant were
hand-annotated, and these manual annotations are the gold stan-
dard in our evaluation.

In the evaluation, we examine two kinds of boundaries.
First, left and right word boundaries, across all words, for Buck-
eye only. (Most word boundaries in Phonsay were not anno-

4https://github.com/MontrealCorpusTools/PolyglotDB



Figure 1: Histograms of absolute differences (on log scale) between force-aligned word and phone boundaries using MFA-LS aligner
and gold-standard annotations. Dashed line is at 1/2 frame rate (5 msec), which is a lower bound on average absolute difference.
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tated.) Second, phone boundaries, for each phone boundary of
CVC words in either dataset, that corresponds to a manually-
annotated boundary. For Buckeye, this is all four boundaries
(denoted .CVC, C.VC, CV.C, CVC.). The CVC words in Buck-
eye were those from the list of [25], with the additional criterion
of having all three segments realized in some way according
to the manual transcription. For Phonsay, the boundaries were
C.VC, CV.C, and CVC. for the target word in every sentence.

3.2. Aligners and training

Our evaluation uses MFA and two HTK-based aligners which
are currently used in language research: FAVE, the most
widely-used aligner in recent work, and Prosodylab-Aligner
(PLA). PLA and FAVE are used as representative of aligners us-
ing GMM-HMM monophone acoustic models5 without speaker
adaptation, which are and are not trainable, respectively. Many
existing aligners fall into these two categories (e.g. [6, 7, 8, 15]).

In order to minimize out-of-vocabulary words for PLA and
FAVE, the pronunciation dictionaries which ship with each of
the three aligners were combined into one Arpabet-based dic-
tionary, which was used across all three aligners for training
(MFA, PLA) and alignment (MFA, PLA, FAVE).

Both MFA and PLA were trained in two ways: on the Lib-
riSpeech corpus, and on the corpus to be aligned: Buckeye
(the subset without unknown words) or Phonsay. For training
on LibriSpeech, MFA was trained on the full corpus (∼1000
hours), while PLA was trained on the ‘clean’ subset (∼450
hours), due to technical difficulties in HTK training on large
datasets. For training on Buckeye, we treated the corpus as
if only utterance boundaries and the orthographic transcrip-
tion were known, to simulate the most common case in align-
ing speech in linguistic research. We refer to the resulting
trained aligners as MFA-LS, MFA-Retrained, PLA-LS, and PLA-
Retrained, where the “retrained” aligners refer to the version
trained on Buckeye or the version trained on Phonsay, when dis-
cussing each corpus. We also used the existing version of FAVE,
which uses acoustic models trained on the SCOTUS corpus
(25 hours) [26]. Thus, our experiments compare five types of
aligner (MFA-{LS, Retrained}, PLA-{LS, Retrained}, FAVE).

Each type of aligner was applied to align the Buckeye and
Phonsay datasets, resulting in predicted word and phone bound-
aries. Note that we did not split the datasets into training and

5While it is possible to use triphone models in HTK, all distributed
software packages for alignment use monophone models.

Table 1: Accuracies at different tolerances (percentage below
a cutoff) for absolute differences between force-aligned bound-
aries using MFA-LS aligner, and gold-standard annotations.

Tolerance (ms)
<10 <25 <50 <100

Word boundaries (Buckeye) 0.33 0.68 0.88 0.97
Phone boundaries (Buckeye) 0.41 0.77 0.93 0.98
Phone boundaries (Phonsay) 0.36 0.72 0.88 0.95

test sets, as the common use case for a trainable aligner is to
simultaneously train on and align the entire dataset of interest.

Our evaluation considers two subsets of the predicted
boundaries, described above: word boundaries (Buckeye only),
and phone boundaries (Buckeye and Phonsay). The metric we
use for accuracy of a force-aligned boundary is the absolute dif-
ference (in msec) from the manually-annotated boundary.

3.3. Results

Our results address questions (1)–(3): how good are MFA’s
alignments ‘out of the box’ compared to hand annotation, and
do the more complex architecture and trainability of MFA lead
to more accurate alignments?

3.3.1. Alignment quality

We first consider the performance of MFA-LS, which is the ver-
sion distributed with the current version of MFA. Performance
on the two datasets approximates the performance a user can
expect if MFA-LS is applied to lab (Phonsay) or conversational
(Buckeye) English data, without retraining.

Figure 1 and Table 1 show the distribution of manual/force-
aligned differences, for each kind of boundary, for the two
datasets. The distributions of differences are highly right-
skewed, as for other forced aligners [8, 26]: 2–5% of tokens
have differences of at least 100 msec, while about 90% have dif-
ferences of less than 50 msec. Table 2 (row 1) gives the mean
and median of manual/aligned boundary differences for each
case. These measures can be compared for the Buckeye corpus
to differences between human transcribers reported by [27]—
bearing in mind that the set of word and phone boundaries used
there differs from the set used in our evaluation.

For word boundaries, the mean manual/aligned difference
is 24 msec, which is comparable to 26 msec intertranscriber



Table 2: Comparison of aligners in detecting word boundaries
(Buckeye only) and phone boundaries (Buckeye and Phonsay).
Means and medians are over differences between aligned and
gold-standard boundaries.

Word bound. Phone boundaries
Buckeye Buckeye Phonsay

Aligner mean med mean med mean med
(ms) (ms) (ms) (ms) (ms) (ms)

MFA-LS 24.1 15.8 17.0 11.2 25.2 11.3
MFA-Retrained 22.6 15.0 17.3 11.8 16.6 10.8
PLA-LS 30.5 15.6 24.0 13.9 40.1 21.5
PLA-Retrained 27.2 15.6 24.7 15.8 25.9 16.5
FAVE 24.7 16.6 19.3 12.0 21.8 13.0

reliability [27]. 68% of manual/aligned differences are under 25
msec, which is significantly lower than the 90% intertranscriber
agreement reported at 26 msec tolerance.

For phone boundaries, the mean difference is 17 msec for
Buckeye and 25 msec for Phonsay. For Buckeye, an identical
figure (17 msec) is reported for intertranscriber agreement [27].
The median difference is comparable (11 msec) for Phonsay and
Buckeye, suggesting that the main difference between them is
more gross misalignments for Phonsay (visible in Fig. 1 right).

In sum, MFA performs well across both datasets and bound-
ary types. While phone and word-level alignment is comparable
to human annotators on average, the force-aligned boundaries
do contain more medium-to-large alignment errors (>25 msec).

3.3.2. Architecture

To examine the effect of MFA’s more complex architecture—
triphone acoustic models and speaker-adapted features, com-
pared to monophone acoustic models without speaker
adaptation—we compare MFA-LS to PLA-LS and FAVE. The
comparison with PLA-LS is most important, since MFA is es-
sentially the same as PLA except for this modified architecture.

Rows 1, 3, 5 of Table 2 show, for these three aligners,
the mean and median differences between manual and force-
aligned boundaries for each condition. In most cases (columns
of Table 2), the ordering is MFA-LS < FAVE < PLA-LS. How-
ever, MFA-LS and PLA-LS have roughly the same median for
word boundaries for Buckeye (below FAVE), and FAVE has the
lowest mean for phone boundaries for Phonsay.6 Still, MFA-
LS has the best overall performance of the three aligners. The
difference between MFA-LS and PLA-LS suggests that MFA’s
different architecture led to better alignments.

To what extent is MFA’s performance in this comparison
due to the updated acoustic model versus speaker adaptation?
Experiments with a version of MFA with speaker adaptation
disabled suggest that it is the triphone acoustic model that pri-
marily accounts for MFA’s performance relative to PLA, with
88%/95% of the performance difference for word/phone bound-
aries (as measured by mean absolute manual/aligned difference)
between PLA-LS and MFA-LS on Buckeye coming from just
changing the acoustic model.7

3.3.3. Experiment 3: Training

To examine the effect of retraining on the dataset to be aligned,
we compare MFA-Retrained to MFA-LS and PLA-Retrained to

6All comparisons are significant (paired Wilcoxson rank-sum test).
7Disabling speaker adaptation gives better performance as measured

by the median, suggesting that enabling speaker adaptation may induce
more gross errors, while increasing mean alignment accuracy.

PLA-LS. This comparison represents a common use case: a
researcher has a medium-to-large dataset (say 5–50 hours) of
speech from speakers of a given type (e.g. Buckeye: Columbus-
dialect adults). She can either re-train the aligner’s acoustic
models on this data, or use acoustic models which have been
pre-trained on a much larger dataset that contains significant in-
terspeaker variation (e.g. LibriSpeech: 1000 hours). Will train-
ing on a smaller amount of more similar data or a larger amount
of more variable data give better alignments?

The effect of retraining can be evaluated by comparing rows
1 and 2 of Table 2 for MFA, and rows 3 and 4 for PLA, again ex-
amining the mean and median of absolute differences between
manual and aligned boundaries. In five cases (Buckeye word
boundary mean for MFA/PLA, Phonsay phone boundary mean
for MFA and mean/median for PLA), retraining leads to better
performance, decreasing the mean or median difference by at
least 1 msec. In six of the remaining seven cases, retraining
makes little difference (< 1 msec mean or median). In only one
case (Buckeye phone boundary median for PLA) does retrain-
ing lead to clearly worse performance (> 1 msec difference).

On balance, retraining on the dataset to be aligned often
improves alignment accuracy relative to using acoustic models
pretrained on a larger dataset—and rarely hurts. However, the
discrepancy between mean and median values in some condi-
tions suggests that a more thorough evaluation should examine
the effect of retraining on gross alignment errors.

4. Conclusion

We have presented a new open-source trainable forced aligner
for language research, the Montreal Forced Aligner, which up-
dates the Prosodylab-Aligner. MFA uses more complex acous-
tic models (triphones), and is built using the Kaldi toolkit in-
stead of HTK. MFA showed good performance in aligning word
and phone boundaries in one lab speech dataset and one spon-
taneous speech dataset. Notably, in each test case (columns of
Table 2), it is one of the MFA aligners which gives the most
accurate alignment relative to the gold standard.

Our evaluation suggests that both MFA’s more complex ar-
chitecture and the ability to retrain on new data generally im-
prove performance. Using triphone acoustic models in partic-
ular seems to improve accuracy, compared to the monophone
models commonly used in current aligners. More complex ar-
chitectures, such as using artificial neural network models im-
plemented in Kaldi (as in [14]), could improve accuracy further
and are planned in future development. Retraining on the data
to be aligned generally improved alignment accuracy, though it
often had little effect—perhaps reflecting the similarity of train-
ing data for all aligners tested (North American English).

The mixed results of our evaluations point to the need for
more thorough evaluations of forced aligners, to establish best
practices for deploying forced alignment in language research
[2, 28, 29]. Future work could examine the conditions under
which adding speaker adaptation, or adapting an existing forced
aligner versus retraining, improves alignment [30].
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